
The Application Kit

NextStep

NeXTSTEP

NeXTSTEP is NeXT’s application development and
user environment, consisting of the Workspace
Manager, Interface Builder (& Project Builder),
Application Kit, and Window Server.

5 - 1

NextStep

Applications

Interface Builder

Application Kit

BSD 4.3/Mach

Hardware

Workspace

Window Server

Display Postscript

Interface/Project Builder

5 - 2

Application Kit

What is the Application Kit?

The Application Kit:

Provides a basic program structure for
applications that draw on the screen and respond
to events.

Implements the NeXT user interface and relieves
you of the more tedious programming tasks.

Provides a rich library of objects (classes) for
getting user input and a uniform way of interacting
with those objects.

5 - 3

Application Kit

Application Kit Inheritance Hierarchy

Window

NXBitmapImageRep

NXImageRep

NXImageNXImage

NXCursor

Font

FontManager

PrintInfo

Pasteboard

Speaker

Listener

NXJournaler

Cell

NXEPSImageRep

NXCustomImageRep

NXBrowserCell

ActionCell

FormCell

SliderCell

NXCachedImageRep

SelectionCell

Responder Application

View Form

Text

Control

Box

NXSplitView

ScrollView

ClipView

NXBrowser

Matrix

Slider

Scroller

NXColorWell

Panel

FontPanel

PrintPanel

NXImage

Object

PopUpListMenu

OpenPanelSavePanel

NXColorPanel

PageLayout

TextField

Button

MenuCellButtonCell

TextFieldCell

5 - 4

Application Kit

Using AppKit Classes

You can make use of AppKit classes four ways:

1. You can create objects (instances) belonging to
the classes.

2. You can define subclasses of AppKit classes,
then create instances of those for your application.

3. You can define a category that extends the
original definition of a class.

4. You can define delegate objects that act on
behalf of objects that inherit from the AppKit.

5 - 5

Application Kit

Structure of an Application

The NeXT interface is event-driven.

The Application Kit provides the main event loop
and automatically dispatches events to the
appropriate object.

Every application has one Application object that
gets events from the Window Server and oversees
the application’s windows.

5 - 6

Application Kit

The Event Cycle

remote messages

Monitored
Port or File

data

100 100 translate

150 100 50 360 0 arc

0 setgray fill

events

PostScript code

d
ra

w
in

g

Window
Server

User

Other
Applications

Application

timed entries

5 - 7

Application Kit

Principal Application Kit Objects

Responder

Window

Application
View

Control

Cell

Object

5 - 8

Application Kit

Responder

An abstract superclass for classes that respond to
keyboard and mouse events.

Responders participate in a linked-list of event-handling
objects called a responder chain.

If an object in the chain can’t handle a message
indicating an event, the message is passed on to its
next responder.

The Responder class defines the elements essential
to the responder chain, a nextResponder instance
variable, and the methods for passing messages from
one object to another.

5 - 9

Application Kit

View

The View class is an abstract superclass which
provides a structure for drawing on the screen and
for handling mouse and keyboard events.

All graphical objects inherit from View.

The View’s frame rectangle defines the boundaries
of the View, the tablet on which it can draw.

Every View object is associated with a particular
window.

Views within a window are linked together in a view
hierarchy.

5 - 10

Application Kit

View Hierarchy

superview

subviews

frame

superview

subviews

frame

superview

subviews

frame

5 - 11

Application Kit

Control

A subclass of View that provides an abstract
superclass for objects that receive mouse and
keyboard events and translate them into application-
specific messages for other objects.

A Control’s job is to interpret the user’s mouse and
keyboard actions and ask another object to respond
to them.

5 - 12

Application Kit

Control Examples:

TEXTFIELD

BUTTON

COLORWELL

MATRIX (OF BUTTONS)FORM

BROWSER

SLIDER

5 - 13

Application Kit

Cell

A Cell is an object that can draw within a View and
handle events that are passed to it from the View.

Cells are a place for putting much of the work
associated with a View.

Most Controls are built around Cells. The Control (a
View) provides the rectangle for drawing and
receives the mouse events. The Cell does the actual
work of drawing in the View and responding to the
events.

For example, Buttons have ButtonCells, Sliders have
SliderCells. Or there can be a Matrix of ButtonCells.

5 - 14

Application Kit

Window

Every window is managed by a Window object.

Every Window has a view hierarchy with at least two
views: a frame view and a content view.

The frame view fills the frame rectangle and draws
the Window’s border, title bar, and resize bar.

The content view is a subview of the frame view and
is the highest level view for drawing or installing other
subviews.

The Window oversees all of its Views.

5 - 15

Application Kit

Here is a typical window:

close button

resize bar

content area

miniaturize button title bar

border

5 - 16

Application Kit

myWindow

nextResponder (nil)

contentView

frontView

nextResponder

superview

subviews (nil)

window

backView

nextResponder

superview

subviews

window

myContents

nextResponder

superview

subviews

window

longView

nextResponder

superview

subviews (nil)

window

5 - 17

Application Kit

Application

Every program has one Application object which:

Receives events from the Window Server and
distributes them to other objects.

Manages the application’s Windows.

Keeps global information that’s shared by other
objects.

NXApp is the global variable which points to your
Application object.

5 - 18

Application Kit

NXApp

contentView

window

contentView

window

contentView

window

contentView

window

windowList

window0 window1 window2 window3

aView aView aView aView

5 - 19

Event Handling

Events

Events are things like mouseUp, mouseDown,
mouseDragged, etc.

Events are dispatched as messages.

Usually, one object (e.g., a control) responds to the
event, then notifies another object that the event
occurred.

Two types of messages get sent depending on the
object that receives the initial message: action and
notification.

5 - 20

Event Handling

The Event Process

1. The Window Server sends mouse, keyboard, and
machine events to the Application object.

2. Within the application, the AppKit dispatches
event messages to the appropriate object.

3. The object responds.

5 - 21

Event Handling

The Event Process: A Closer Look

Window Server sends all events to the Application
object.

- The Application object handles machine events
directly (e.g., power off).

- If a window event, the Application object sends a
window event message to the appropriate window
(e.g., close window).

- Otherwise, it sends an event message to the
appropriate window for dispatch.

5 - 22

Event Handling

The Event Process: A Closer Look
(continued)

The window dispatches mouse event messages to
the appropriate view in the Window.

mouseDown: to the deepest View underneath the
mouse.

mouseUp: or mouseDragged: to the view which
initially received mouseDown:.

mouseEntered: or mouseExited: to the object
which "owns" the appropriate tracking rectangle.

keyboard and mouseMoved: event messages are

dispatched to the window’s firstResponder.

5 - 23

Event Handling

How Objects Respond

- Do nothing but pass event message on to its
nextResponder.

By default, nextResponder is the object’s
superview.

This is the default behavior for Views.

- Perform object-specific action.

E.g., Text objects display characters
corresponding to keystrokes.

5 - 24

Event Handling

How Objects Respond (continued)

- Begin a modal loop

E.g., a Button object highlights on a mouseDown:
message and enters a modal loop waiting for a
mouseUp event.

- Respond to the event and send a message to
another object notifying it of the event.

Two notification paradigms are used here:

1. Target-Action is used by Controls.

2. Delegation-Notification is used by Window,
Application, and Text.

5 - 25

Event Handling

Target-Action

The control object gets an event message and
handles the event;

e.g., after a mouseDown: message a Button
object highlights and waits for a mouseUp event.

When handling is complete, the control notifies a
target object by invoking an action method owned
by the target.

In effect, a control object receiving an event
message translates it into an action message to a
target object.

5 - 26

Event Handling

Target-Action (continued)

Action messages to the target from the sender are
always of the special form:

[target actionMethodName:self]

The target object must have an action method of
the form:

-actionMethodName:sender{
<code to take action>
return self;

}

(sender will contain the id of the sending object.)

5 - 27

Event Handling

Examples of Action Messages

The Application Kit defines a number of action messages to
which specific objects in the kit will respond. A few examples
are below. These objects respond to these action messages:

Application

hide: Hide application’s windows
unhide: Unhide application’s windows
terminate: Terminates the application

Button

performClick: Simulates clicking button

5 - 28

Event Handling

Control & Cell

takeIntValueFrom: Get value from sender & set own value
takeStringValueFrom: Get value from sender & set own value
takeFloatValueFrom: Get value from sender & set own value
takeDoubleValueFrom: Get value from sender & set own value

Text

cut: Cut selection & put in pasteboard
copy: Copy selectiont to pasteboard
paste: Paste contents of pasteboard
delete: Delete selection, not to pasteboard

5 - 29

Event Handling

View

printPSCode: Print view and its subviews

Window

orderFront: Brings window to front
orderOut: Remove the window from the screen
performClose: Simulate clicking the close button
printPSCode: Prints all of the view within the window

Of course, you can send these from your own custom
object. For example, order your info panel to the front:

[myInfoPanel orderFront:self]

5 - 30

Event Handling

Action Methods

When a target object’s method responds to an
action message, it must take some action. This
action might be any of:

1. Simple Action - Simply do something.

2. Query the Control - Ask the control for
information, then do something with it.

3. Query a Matrix - The control is in a matrix which
must be queried for more information.

5 - 31

Event Handling

Action Methods (continued)

1. Simple Action

In the simplest case, as when responding to a button,
the method simply takes an action without
communicating with the sending control object:

 -clear:sender //msg from a button
{

[display setFloatValue:0.0];
return self;

}

5 - 32

Event Handling

Action Methods (continued)

2. Query the Control

Sometimes it is necessary to query the sender for
more information. For example, a method responding
to a message from a slider might need to ask the slider
for its value:

-takeVolumeFrom:sender //msg from a slider
{

volume=[sender floatValue];
return self;

}

The id of the sending control (slider) is in sender.

5 - 33

Event Handling

Action Methods (continued)

3. Query a Matrix

When the control is a Matrix, it can be asked for the id

of the cell in the matrix which initiated the message.
That cell can then be asked for its tag (a label integer).
For example, a keypad matrix of buttons 0 to 9, where
the tags of the buttoncells are also set to 0 to 9:

-digit:sender //msg from a button matrix
{

nextDigit=[[sender selectedCell] tag];
//or: =[sender selectedTag];

<do something with it>
return self;

}

5 - 34

Event Handling

Action Methods (continued)

3. Query a Matrix (continued)

Form is a subclass of Matrix. The FormCells in the
Form are individually selectable. For example, the
Form is asked for the index in the Form where data
was entered, then the data at that index is obtained:

-dataIn:sender //msg from a form
{

index=[sender selectedIndex];
dataEntered=[sender intValueAt:index];
<do something with it>
return self;

}

5 - 35

Event Handling

Delegation and Notification

An object in AppKit classes such as Window, Text, and
Application will "delegate" some of its responsibility for
handling an event to another object called its delegate
by "notifying" the delegate that the sender’s state has
either changed or is about to change.

A delegate can choose to:

Ignore the notification.

Do additional processing in response.

Possibly block the change that resulted in the
sender sending the notification.

5 - 36

Event Handling

Delegation and Notification
(continued)

Why use delegates?

Extend default handling of events by AppKit objects
without subclassing.

Centralizes custom behavior in one place (i.e., the
delegate).

Delegates can serve multiple clients and thus provide
a natural way of keeping track of the status of things.

5 - 37

Event Handling

Delegation and Notification
(continued)

Delegation-notification is similar to the target-
action paradigm in that...

The delegate, like the target, is an object and must
be explicitly set.

An object can have only one delegate at a time.

A notification message is sent in response to some
event or change.

5 - 38

Event Handling

Delegation and Notification
(continued)

Delegation-notification is different from the target-
action paradigm in that...

Notification messages are pre-defined by the
sender’s class definition. The delegate implements
methods only for those it chooses to respond to.

An object may send a different notification message
depending on what has occurred.

If no delegate is set, no notification messages are
sent.

5 - 39

Event Handling

Delegation and Notification
(continued)

Notification messages are only sent if...

The delegate has been set in IB or by message:

[myWindow setDelegate:myDelegate]

and the delegate has implemented a method of the
same name:

/*in class implementation for
myDelegate*/
-windowWillClose:(id)theWindow {
...}

5 - 40

Event Handling

Delegation and Notification
(continued)

A delegate need only implement methods for
those notification messages to which it cares to
respond.

When a delegate has not implemented the
corresponding method for a particular notification
message, the sender does not send the message.

For many AppKit notification messages, the
delegate can block a proposed change by returning
nil. If the delegate does not implement the
corresponding method, the change will occur by
default.

5 - 41

Event Handling

Example:

The code in the object sending the notification
message (in this example, the Window object)
would look something like this:

if(delegate &&[delegate
respondsTo:@selector(windowWillClose:)])

[delegate windowWillClose:self];

For Window’s windowWillClose: notification

message, if the delegate returns nil, the window will
not close (the code above does not reflect that).

5 - 42

Event Handling

Examples of Notification
Messages

Several AppKit objects have pre-defined notification
messages for changes in state for which custom behavior may
be desired. A few examples are below. These objects send
these messages to their delegate:

Application

appDidInit:
appDidAwake:
appDidBecomeActive:
appDidHide:

5 - 43

Event Handling

Window

windowWillClose:
windowWillResize:toSize:
windowDidResize:
windowDidMove:
windowDidExpose:
windowDidBecomeKey:
windowDidBecomeMain:
windowDidMiniaturize:
windowDidUpdate:
windowWillMiniaturize:toMiniwindow:

5 - 44

Event Handling

Text

textWillChange:
textWillResize:
textWillEnd:
textDidResize:oldBounds:invalid:
textDidChange:
textDidEnd:endChar:
text:isEmpty:
textDidRead:paperSize:
textWillConvert:fromFont:toFont:
textWillFinishReadingRichText:stream:atPosition
textWillSetSel:toFont:
textWillStartReadingRichText:
textWillWrite:paperSize:

5 - 45

Event Handling

First Responder

keyDown events are dispatched to the frontmost
window willing to accept keyDown events:

Determined by window’s eventMask.

Default of a titled window is to accept keyDown
events.

Within a window, keyDown events are dispatched
to the window’s firstResponder.

5 - 46

Event Handling

First Responder (continued)

Every window has a firstResponder.

Must have Responder as an ancestor class.

It responds to keyDown: message when its

window is the keyWindow.

The firstResponder in the keyWindow is
automatically sent all action messages for whom
no specific target was specified.

If the firstResponder cannot take action, the
events are passed up a responder chain.

5 - 47

Event Handling

First Responder (continued)

Two ways to become a firstResponder

1. On mouseDown event, the window asks a view
object if it wants to become firstResponder via:

if([myView acceptsFirstResponder])...;

Default View method returns NO; override default if
you want the view to respond to keyboard
messages.

-(BOOL)acceptsFirstResponder

{return YES;}

5 - 48

Event Handling

First Responder (continued)

2. Explicitly declare an object to be firstResponder.

[window makeFirstResponder:self];

Objects which are typically firstResponders are
Text and TextField.

5 - 49

Event Handling

In Interface Builder, an interface object can connect to
the firstResponder icon in the File Window:

5 - 50

Event Handling

Speaker/Listener

Communication protocol between different
processes.

Allows for fast data transfer.

Transparent on network, i.e., processes on
different machines can communicate seamlessly.

5 - 51

Application Kit

Resources

NeXT documentation manuals.

NeXTSTEP Applications Programming: A Hands-On Approach, by

Simson Garfinkel and Michael K. Mahoney, Spring-Verlag, 1992.

The best book anywhere on developing applications under

NeXTSTEP.

5 - 52

